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Abstract

In this paper we address the collective management of environmental commons
with multiple usages in the framework of the mathematical viability theory. We
consider that the stakeholders can derive from the study of their own socioeco-
nomic problem the variables describing their different usages of the commons
and its evolution, and a representation of the desirable states for the commons.
We then consider the guaranteed viability kernel, subset of the set of desirable
states where it is possible to maintain the state of the commons even when its
evolution is represented by several conflicting models. This approach is illus-
trated on a problem of lake eutrophication.

Key words viability theory; guaranteed viability; collaborative decision; en-
vironmental commons; lake eutophication

1 Introduction

Sustainable use of natural resources, environmental conservation, social inclu-
sion and welfare, economic activity and development imply generally conflicting
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management objectives. In the tragedy of the commons, [Hardin, 1968] high-
lights the exhaustion of open-access resources by numerous users with similar
view, but the same analysis can be done with different types of users whose
activity is based on the resource. A lot of work on sustainability of natural re-
sources is still focused on allocation problem, where stakeholders are considered
as competitors for the share of quotas, for example for the regulation of fish-
eries or water sharing (see references for instance in [Parrachino et al., 2006],
[Oubraham and Zaccour, 2018]).

In order to take into account the different types of stakeholders’ interests,
many efforts are done in the economic approach to assess the value of environ-
mental and social services (see for example a framework in [de Groot, 2006]).
When points of view are considered to be incommensurable, multi-criteria or via-
bility theory approaches propose interesting alternatives. Even when stakehold-
ers are considered as competitors for one common resource, these approaches
allow to take into account more indicators than the level of renewable resource
and the profit directly based on it. For example, in a quantitative work on
fishing regulation [Dowling et al., 2020], 21 score functions are designed for the
regulation of fishing, depending on fish biomass and parameters computed each
year depending on the control scenario. Weighted stakeholders’ preferences over
the score functions are then optimized each year for different levels of the con-
trol variable. When stakeholders express different points of view, the viability
theory (VT) approach allows to combine the different constraints placed on the
system, without direct connection to the underlying profit of the related activity.
For instance, in a hydro-power dam management problem [Alais et al., 2017],
the main concern is maximizing the profit of the electricity provider with wa-
ter control under uncertainty on water inflow and electricity price. Recreational
and agricultural activities impose an additional seasonal constraint on the water
level without further profit analysis. In [Wei et al., 2013], the multi-objective
concern of a tourist city is studied through the linked evolution of the number
of tourists, tourism infrastructure and environment quality. The different stakes
are represented by constraints on the level of these variables. The VT algorithm
identifies the area where it is possible to maintain the evolution of the three vari-
ables between these bounds. Viability approach has shown its potential in many
other domains as stated in the review from [Oubraham and Zaccour, 2018]. In
all these works, the model of the evolution of common resources or land uses,
together with the impact of controls on the system (such as the total allow-
able catch in fishery regulation), is supposed to be consensual. It is generally
taken from the literature or from previous work and parameters are calibrated
from data and time series. In works cited in [Oubraham and Zaccour, 2018], the
model representing the system at stake is always considered as consensual. In
theoretical works, models can certainly be generic functions of variables, controls
and uncertainties (it is the case in [De Lara and Martinet, 2009],[Křivan, 1991],
[Křivan and Colombo, 1998], [Martinet et al., 2016]). But in their applications
and in the other works cited in [Oubraham and Zaccour, 2018], when uncer-
tainty is explicitly taken into account, it is in fact related to data and mea-
surements used to assess parameters in the model, not to the definition of the
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model itself. As stated in [Martinet et al., 2016], uncertainty affects parameters
such as growth rate, recruitment or mortality in dynamic population models,
unknown or unpredictable events such as climate fluctuations, or externalities
such as price, as in games against nature. Models are supposed to be consen-
sual with their explicit hypotheses (which are generally discussed). Actually in
[Little et al., 2007] three models are considered for larval dispersal and mod-
elers can parameterize the system to run simulations with their own choice of
model. It is motivated by the possibility of studying different species, so for the
viability study only one model is parameterized.

However, the ComMod approach [Etienne, 2014] has shown that modeling
the evolution of the system at stake is difficult and hardly consensual, since
scientific or technical viewpoint can be considered by stakeholders as a view-
point among others. The ComMod approach addresses this problem with seri-
ous games supported by simulation models [Barreteau et al., 2001] where stake-
holders can test their hypotheses about the system evolution and the impact
of actions. The process goes on, with additional research if necessary, until a
consensus on the model is reached.

To take into account this discrepancy at the model level we consider here
that stakeholders have their own model of the evolution of the system with the
impact of controls. We consider that stakeholders are able to define constraints
on the key variables of their usages of the commons, such as the number of
tourists, the quality of water (for example measured in term of concentration
of pollutant or bacteria), the quality of the environment (for example mea-
sured with biodiversity indicators related to the population of local species),
etc. These constraints are generally seen as thresholds. We consider that the
objective of the group of stakeholders is to define a set of states where the system
can be maintained with appropriate controls. We use viability theory, in par-
ticular the concept of guaranteed viability set [Aubin, 1997], which is defined
to take into account uncertainties (such as move by nature, see for instance
[Bates and Saint-Pierre, 2018]).

The paper is organized as followed: we first describe the problem and our
hypotheses, together with a reminder of viability theory. We describe individual
and group viewpoint as viability problems, and show why in this context of
several models it is more difficult to seek technically sound agreement. We
illustrate this approach with a problem of lake eutrophication. In Section 3, we
first present the perturbation embedding function, which allows us to consider
each model as a perturbation of a central model. This formulation enables the
definition of a guaranteed viability problem. In Section 4 we present and discuss
the application to the management of the lake. We summarize the results and
perspectives in the concluding section.

2 Definition of the problem

Let us consider an entity A (for instance a preserved area) in evolution, which
is submitted to the management decision of a group of N members. The group
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has to first define a project for A as a set K of desirable states within which
the state of A should remain with an appropriate set of actions depending on
the state of A. The group has then to find a solution to this project.

Each member i ∈ N := {1, . . . , N} has a personal view and project for
entity A. Each member i considers that entity A is described by a vector of
state variables xi ∈ Rni , and that its evolution is governed by a controlled
dynamical system. Member i considers that the state of A should remain in
a set of desirable states, Ki ⊂ Rni . Member i deems that the controls which
should be used depend on the state of A. These admissible controls are defined
by a set-valued map Ui : Rni  Rpi , where Ui(xi) is the set of admissible
controls that member i finds appropriate at state xi.

Definition 1 (Ki, Ui) defines member i’s project for the management of A,
where Ki is the set of desirable sets and Ui the admissible control map.

From the viability theory viewpoint, a solution to member i’s project consists
in finding the states of Ki from which there always exists a control function
selected in Ui so that the state of A remains in Ki.

The objective of the group to define its project, compatible with every mem-
ber’s project, then to find a solution to it, compatible with everyone’s solution.

We use as an illustration a problem of lake eutrophication as stated in
[Carpenter et al., 1999]. Agricultural practice and other human activities can
lead to lake pollution with phosphates. Phosphorus dynamics in the lake can
lead to eutrophication, which negatively impacts the biodiversity of ecosystem,
and causes serious annoyance to residents and tourism activities. We consider
that a committee is formed to study and manage the problem. It is composed
of farmers and local elected authorities.

2.1 What members share about their project

Assumption 1 Members of the decision group share the knowledge about which
state variables they consider for A, so ∀i ∈ N , ni = n. We note x ∈ Rn the
vector of state variables of A that is shared by each member of the group.

In particular, when measurements of the state of A are possible, all members
agree on the validity of the measure, so if the measure of the state of A at date
T is x(T ), then ∀i ∈ N , xi(T ) = x(T ).

In the lake and nearby farms problem, following [Carpenter et al., 1999] and
[Martin, 2004], we consider that all members agree that the key variables to the
problem are the Phosphorus input (noted L) and the Phosphorus concentration
in the lake (noted P ).

Assumption 2 Members of the decision group share the knowledge about the
control variables they consider for A. We note U : Rn  Rp the set-valued map
of admissible control which associates the group’s set of admissible controls with
the state of A: ∀i ∈ N , Ui = U .
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Assumption 2 supposes that all group member’s have reached a consensus re-
garding which control variables are to be considered. This can be achieved by
restriction to the intersection of members’ control set so that ∀x ∈ Rn, U(x) =⋂
i∈N Ui(x). When the latter is empty, a negotiation should take place to build

a non empty U(x). We suppose here that such a negotiation has taken place.
In the lake and nearby farms problem, following [Martin, 2004], we consider

that the committee agrees to the possibility of controlling the rate of variation
of the Phosphorus input and to maintain this rate between boundaries, so U =
[umin, umax]. This can be done by farmers controlling their fertilizer input, by
the greater or lesser use of wetlands or by the use of water treatment plants
([Gajardo et al., 2017]).

With Assumption 1 and 2, it is possible to define the group project for A.

Definition 2 Let K =
⋂
i∈N Ki with K 6= ∅, and U : Rn  Rp a set-valued

control map defined on K. (K,U) is a group project if all members agree that
the state of A should remain in the set of desirable states K, using controls from
the admissible map U .

When K ⊂ Rn = ∅, a negotiation should take place to build a non empty K.
We suppose here that such a negotiation has taken place.

In the lake and nearby farms problem, everybody wants to keep the lake in
an oligotrophic state, which supposes to set a concentration limit of Phophorus
Pmax in the lake (for example established from previous observations). Every-
body also wants to maintain or develop the agricultural activity, which supposes
to allow a minimum amount of Phophorus input Lmin in the lake. So everybody
agree to maintain the state of the lake described by (L,P ) in a set of desirable
states K = [Lmin,+∞)× [0, Pmax].

When Assumption 1 and Assumption 2 are verified, all group members can
describe the dynamics of the state of A as they seen it as a (possibly discrete)
controlled dynamical system with the shared variables. In the case of the lake
and neighboring farms, the dynamics for member i is supposed to be defined
according to [Carpenter et al., 1999] and [Martin, 2004], by the equations of
system 1 with the constraints on Lmin and Pmax.

S(bi, ri, qi,mi)

{
dL
dt = u ∈ U = [umin, umax]
dP
dt = −biP (t) + L(t) + ri

P (t)qi

m
qi
i +P (t)qi

(1)

umin and umax are the maximum effort farmers and local authorities are ready
to allow or to take to increase or decrease the phosphorus input. bi is the
rate of loss (due to sedimentation and outflow), ri, qi and mi are parameters
of the sygmoid-like (s-shaped) dynamics of Phophorus recycling in the lake,
which are generally set by calibration from observations: ri is the maximum
rate of recycled Phophorus, mi is the concentration of Phosphorus at which the
recycling rate is half its maximum and qi is a parameter of the steepness of the
dynamics (see [Carpenter et al., 1999] for more details).
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In the general case, we note Sc(f, U) the continuous dynamical system de-
fined by:

Sc(f, U)

{
x′(t) = f(x(t), u(t))
u(t) ∈ U(x(t)) ⊂ Rp . (2)

where f is a function from Rn × Rp to Rn and U a set-valued map from Rn to
Rp. Similarly, we note Sd(f, U) the discrete dynamical system defined by:

Sd(f, U)

{
xk+1 = f(xk, uk)
uk ∈ U(xk) ⊂ Rp . (3)

We note Sci = Sc(fi, U) the dynamical system that described the evolution of
A for member i in a continuous case. We note Sdi = Sd(fi, U) the discrete
dynamical system that described the evolution of A for member i in a discrete
case. The function fi : Rn × Rp → Rn associates the variations of A state
variables for member i with the current values of the state and control variables.

We don’t assume that the different stakeholders in the group share their
dynamics. We consider here that they don’t necessarily agree on dynamics, and
that they are not compelled to make their belief public. But we assume that
they agree to share this information with a trusted third party.

2.2 A reminder of the viability theory

Referring to [Aubin, 1991], we define viable evolutions and the viability kernel.

Definition 3 An evolution of the system Sc(f, U) (2) (resp. Sd(f, U) (3)) is
viable in K if and only if its trajectory remains in K. In the continuous case:
∀t ∈ R+ x(t) ∈ K. In the discrete case: ∀k ∈ N xk ∈ K.

Definition 4 A set L is viable for the system Sc(f, U) (2) (resp. Sd(f, U) (3))
if for all x ∈ L there is an evolution of the system Sc(f, U) (2) (resp. Sd(f, U)
(3)) starting at x and viable in L.

Definition 5 The viability kernel associated to system Sc(f, U) (2) (resp. sys-
tem Sd(f, U) (3)) under constraint K is the set of all states in K from which
there is an evolution of Sc(f, U) (resp. Sd(f, U)) starting at x and viable in K.

Under some general conditions listed in appendix A, the viability kernel is a
close set. In the interior of the viability kernel, all control are viable, so viable
controls on the boundary show how it is possible to maintain the system in the
constraint set. This information can be used to define control strategies.

Definition 6 A control map with images restricted to viable controls only is
called a viable regulation map.

Proposition 1 [Aubin, 1991]. If L is a viable set for the system Sc(f, U) (2)
(resp. Sd(f, U) (3)), let Ũ be a viable regulation map, then L is a viable set
for the system Sc(f, Ũ) (2) (resp. Sd(f, Ũ) (3). Moreover, for all x ∈ L,
any evolution starting from x and governed by Sc(f, Ũ) (resp. Sd(f, Ũ) in the
discrete case) is viable in L. L is called an invariant set for dynamics Sc(fi, Ũ)
(resp. Sd(fi, Ũ).
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Figure 1: Viability kernel (in gray) of the lake and neighboring farms problem, with
Lmin = 0.1, Pmax = 1.4 (L and P in µgL−1), U = [−0.9, 0.9], dynamics parameters
value q = 8, m = r = 1, b = 0.7. Constraint set boundary is in black plain lines
(L = Lmin, P = Pmax). The curve of equilibria is dashed. Viable controls are shown
as a black line in cartouches. A viable trajectory starting from A is shown (u = −0.09
from A to B, then a cycle with u = +0.09 from B to C, u = −0.09 from C to D,
u = +0.05 from D to B). From S where the lake is still in an oligotrophic state, even
with maximum effort from the farmers (u = umin) the concentration of Phosphorus
becomes too high. From state R also outside the viability kernel, all trajectories
leave the constraint set, leading the lake to eutrophic state or farmers’ activity to an
unsustainable state.

From any state in the viability kernel, it is always possible to find a control
function that allows the state of the system to stay in the viability kernel in-
definitely. Conversely, from any initial state outside the viability kernel, there
is no way to prevent the exit in finite time of an evolution governed by system
(2) (resp. (3) in the discrete case).

In the case of the lake and its neighboring farms, it is shown in [Martin, 2004]
that the viability kernel associated to system (1) submitted to the constraint
(L,P ) ∈ K = [Lmin,+∞) × [0, Pmax] is not empty when Pmax is greater than
the smallest P -value of the equilibria associated with Lmin (an equilibrium P -
value is defined by dP

dt = 0). For example in Figure 1, the state (Lmin, Pe) is
an equilibrium with Pe ≤ Pmax, so the viability kernel is not empty. When the
curve of Equilibria intersects the half-line (L ≥ Lmin, P = Pmax) at (Le, Pmax),
the boundary of the viability kernel is delimited by the segment line (L =
Lmin, P ≤ Pmax), the segment line (Lmin ≤ L ≤ Le, P = Pmax) and the integral
curve of the dynamics with control u = umin arriving in (Le, Pmax). When the
curve of Equilibria doesn’t intersect the half-line (L ≥ Lmin, P = Pmax), as in
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Figure 1, we note Pe the P-value of the highest equilibrum on the segment line
(L = Lmin, P ≤ Pmax). In that case, the boundary of the viability kernel is
delimited by the segment line (L = Lmin, P ≤ Pe) and the integral curve of the
dynamics with control u = umin passing through (Lmin, Pe).

Figure 1 shows the viability kernel for the lake and neighboring farm problem
in this latter case, for a given set of parameters for system (1) and constraint
set K. From any state in this viability kernel, it is possible to find a trajectory
that stays in the viability kernel indefinitely. Figure 1 presents an example of
viable trajectory from a state in the viability kernel. It also shows examples of
states outside the viability kernel; even the most severe control cannot prevent
trajectories from leaving the constraint set. Either the lake will shift to an
eutrophic state, or the economic activity will be jeopardized.

From a state outside the viability kernel, every evolution governed by sys-
tem (1) with this particular set of parameters, choice of constraint set and
control interval will exit the constraint set. In general, dealing with state out-
side the viability kernel implies to study the resilience (as in [Martin, 2004]) or
to redefine the problem. This can be done by relaxing the constraints on the
desirable set (when it is possible), by allowing more efficient control which are
not presently part of the admissible controls, or by modifying the dynamics.
This latter option is generally more difficult to implement, since it implies to
modify the lake itself (see [Liu et al., 2015] for example of such actions).

2.3 Viewpoints as viability problems

Objectives. We assume that Assumptions 1 and 2 are verified, and that the
group has defined (K,U) as its project for A according to Definition 2. K 6=
∅ ⊂ Rn is the set of desirable states for A and U : Rn  Rp the set-valued map
of admissible controls. With this definition of the group project, each member
can work on a solution according to the dynamics he assumes for A. Finally, the
objective of the group is to design a solution from all member’s solutions. Figure
2 summarizes the implications of considering different usages and stakeholders
for the lake and nearby farms problem. Although the intuition is to work from
the set of individual solutions, in this section we show that this approach is
difficult to implement.

2.3.1 Individual Viewpoint

We consider here that each member i is able to describe the evolution of the
state of A with a controlled dynamical system. It is either a continuous system
Sci = Sc(fi, U) (equation 2), or a discrete system Sdi = Sd(fi, U) (equation 3).
We also consider in the following that the conditions for Proposition 3 (resp. 4)
are fulfilled: the viability kernel associated to member i’s system and constraints
is closed.

Let Li ⊂ K be a non-empty viable set for the continuous (resp. discrete)
system Sc(fi, U) (2) (resp. Sd(fi, U) (3)) submitted to constraints K. Then
from all states in Li there is at least one viable evolution governed by Sc(fi, U)
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Figure 2: Diagram of the finding of management solutions for the lake and nearby
farms (system A) in the framework of viability theory with different stakeholders.
Gray arrows denote relationship in the dynamics model. Large gray arrows represents
interaction with stakeholders models and dynamics (which are not explicit). Black
arrows represents the viability analysis process. Dotted lines and arrows show the
main focus of the article.

(resp. Sd(fi, U)) that stays in Li. From member i viewpoint, Li is a solution
state set to the management of A.

Definition 7 Li ⊂ K is a solution state set for Member i for project (K,U) if
Li is a non-empty viable set for Member i’s dynamics.

We note viabi(K) the viability kernel associated to member i’s project with
dynamical system Sc(fi, U) (2) (resp. Sd(fi, U) (3)) submitted to the viability
constraint K.

In the case of the lake and its neighboring farms, Figure 1 shows the viability
kernel for the dynamics (1) submitted to constraint set K = [Lmin,+∞) ×
[0, Pmax] for the particular values of the dynamics parameters (noted as farmers
representative in Figure 3).

2.3.2 Group Viewpoint

In the following we suppose that the group project for A is (K,U) and that all
group members can propose their own individual solution to the management
of A:

∀i ∈ N , viabi(K) 6= ∅

We note H =
⋂
i∈N viabi(K). If H = ∅ a negotiation should obviously take

place between stakeholders, since there is no way to operate A and satisfy the
group members. When the intersection is not empty, it seems a good candidate.
The intersection of viability kernels has already been proposed as a solution
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to insure the viability of two fishing fleets operating on the same resource. In
[Sanogo et al., 2012], the intersection of the viability kernel of both fleets is
viable for each fleet if they change their effort at the same time when necessary,
which suppose a high level of cooperation. But unfortunately, it is not always
the case.

Proposition 2 The intersection of all members’ viability kernels is not neces-
sary viable for all members.

Proof. The problem of the lake and neighboring farms gives a counter-
example. We consider here two stakeholders, say a mayor and a farmer’s union
representative (respectively noted with m and f indices). Both stakeholders
interpret the observations in different ways, so they adopt different values for
the parameters of dynamics (1). Their respective viability kernel (viabm and
viabf ) associated to the constraint set K = [Lmin,+∞)×[0, Pmax] are shown on
Figure 3. For the particular parameters chosen, the intersection H is not empty.
For x = (L,P ) ∈ viabi, viable controls are defined by Ũi with Ũi(Lmin, P ) =
[0, umax], Ũi(L,P ) = {umin} when (L,P ) is on the boundary of viabi with L 6=
Lmin, and otherwise Ũi(x) = U . Nevertheless, state A in the intersection is not
viable for the mayor. State A is on the boundary of the mayor’s viability kernel,
so Ũm(A) = {umin} and the only viable control for the mayor is u = −0.09.
But the trajectory starting at A and governed by (Sm) with u = −0.09 stays
on the boundary of viabm so it leaves H. �

Figure 3: Viability kernels of two stakeholders in the lake and neighboring farms
problem, with Lmin = 0.1 and Pmax = 1.4 (L and P in µgL−1), U = [−0.9, 0.9],
shared parameters value q = 8,m = 1 . In white, the intersection H of the viability
kernels. In dark (resp. light) gray, the complementary area of the mayor (resp. farmer)
viability kernel. State A is not viable in the intersection for the mayor. The arrow
shows the trajectory of state A according to the mayor: it leaves the white area.
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Definition 8 Let L ⊂ K and let (Ui)i∈N be control maps defined on L. Let U
be defined for all x ∈ L by U(x) =

⋂
i∈N Ui(x). U is called the intersection of

(Ui)i∈N on L.

We note Ũ the regulation map defined on the intersection H of all viability
kernels of the group members by the intersection of all the corresponding viable
regulation map: Ũ(x) =

⋂
i∈N Ũi(x). Obviously, if there is a state z ∈ H such

that Ũ(z) = ∅, it means that members cannot agree on a way to control the
evolution of A at this particular state. Unfortunately, even if all members agree
on controls on H, it is not sufficient to reach a consensus.

Corollary 1 Let Ũ be the intersection on H =
⋂
i∈N viabi(K) of the viable

regulation map Ui on each viabi(K) of each member i ∈ N . Dom(Ũ) = H is
not a sufficient condition for H being a viable set for all members.

Proof. In the previous example, we can derive that Ũm(L,P ) = Ũf (L,P ) for all
(L,P ) in the intersection except on the set Hb of the boundary of H wherever
L 6= Lmin. On the part of the boundary of H which is the boundary of viabm
only, Ũm(L,P ) = {umin}, while Ũf (L,P ) = U (and conversely on the boundary

of viabf only). So for (L,P ) ∈ Hb, Ũ(L,P ) = {umin} so Dom(Ũ) = H.
Nevertheless state A is not viable in H for the mayor. �

From Proposition 2, and Corollary 1 we propose the following definition for
a technically sound consensus solution to the management of A.

Definition 9 Let (K,U) be the projet of the management group for A. A set
of state H ⊂ K is a consensus solution if H is a viable set for the each member
and if the domain of the intersection Ũ of the viable regulation maps of each
member on H, (Ui)i∈N , is such that Dom(Ũ) = H.

Actually, to be a consensus solution, a subset H of the constraint set has to
be viable for all members and each viable state has to share at least one viable
control for all members. In that case it is possible for the group member to
reach an agreement on the control, regardless of trajectories. For example, in
the discrete case, from any state x0 of H, all group members share at least one
viable control value that allows the state of A to stay in H. Since the dynamics
they consider are different, there is generally no consensus on state x1. But as
long as the group members still share a viable control value they still can agree
on it. When it is no longer the case, for example at step n, the true value of the
state of A can be measured to continue this process from xn as new starting
point. In the continuous case, when H is a close set, such situations arise only
on the boundary of H.

Figure 4 shows a consensus state set for the lake and neighboring farms
system (1) with parameters of Figure 3. The associated regulation map Ũ is
such that Ũ(Lmin, P ) = [0, umax], Ũ(L,P ) = {umin} when (L,P ) is on the
boundary with L 6= Lmin, and otherwise Ũ(L,P ) = [umin, umax]. For every
state (L0, P0) of the consensus state set G, there is an evolution governed by
system (1) for each stakeholder, starting at (L0, P0), with the same u(0) ∈
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Figure 4: A consensus state set for the two stakeholders in the lake and neighboring
farms problem with parameters from Figure 3. In very light gray, the consensus state
set G, delimited in dot dashed line by the trajectory following the mayor’s dynamics
that is tangent to the boundary of the viability kernel of the farmer at state T (in
plain line). From each state (L,P ) of this trajectory before the tangent state T (with
L > LT ), the evolution governed by the farmer’s system starting at these states
with u = umin leaves the boundary to evolve inside G, as it is shown for state C.
Respectively, from each state of the boundary of the viability kernel of the farmer
with Lmin < L < LT , the evolution governed by the mayor’s system starting at these
states with u = umin leaves the boundary to evolve inside G, as it is shown for state
B. In dashed line, the line of equilibrium for the farmers representative’s dynamics.

Ũ(L0, P0) that stays in G. In the interior of the intersection of the viability
kernels this property is also verified since for every states in the interior all
controls are viable in the viability kernel of each stakeholder. For states on the
boundary with L = Lmin, for both the mayor and the farmers’ representative
several evolutions are viable, in particular with u = 0. The consensus state space
is delimited by the boundary of the farmers’representative and the trajectory
governed by the mayor’s dynamics with the minimum control value that stays
in the viability kernel of the farmers’representative with largest L when P = 0.

In the case of the lake and neighboring farms problem, with only two group
members, it is possible to define a consensus state set because of the properties
of the dynamics, for which the line of equilibria is known, and the viability
kernels and the trajectories corresponding to minimum control value umin can
be easily defined and computed [Martin, 2004]).

For more general cases it is necessary to propose a method that can be
applied without such knowledge. We present such a method in the next section.
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3 Consensus with guaranteed Viability

3.1 Embedding function for the dynamics

Since the group members have their own definition for the dynamics, all mem-
bers can see others’ definitions as perturbations of their own. We show here
that is possible to define the dynamics of A embedding all members’ definitions
seen as perturbations. The dynamics of A depends on the state of A, x(t),
on the control chosen in U(x(t)) and on perturbations occurring from a set
V (x(t)) ⊂ Rq that depends on the state of A. In the continuous case we have:

Svc(f, U, V )

 x′(t) = f(x(t), u(t), v(t))
u(t) ∈ U(x(t))
v(t) ∈ V (x(t))

(4)

In the discrete case:

Svd(f, U, V )

 xk+1 = f(xk, uk, vk)
uk ∈ U(xk) ⊂ Rp
vk ∈ V (xk) ⊂ Rq ,

(5)

where f associates the new state of A with its present state, a control chosen in
U(x(t)) and a perturbation in V (x(t)). Scv(f, U, V ) and Sdv(f, U, V ) are called
dynamical controlled tychastic systems [Aubin, 1997].

Definition 10 We say that System Svc(f, U, V ) (4) (resp. Svd(f, U, V ) (5))
embeds System Sc(fi, U)(2) (resp. Sd(fi, U) (3)) for i ∈ N , and call the corre-
sponding pair (f, V ) an embedding solution if and only if:

∀x ∈ K, ∀u ∈ U(x),∀i ∈ N ,∃vi,u,x ∈ V (x), fi(x, u) = f(x, u, vi,u,x) (6)

We show in appendix B that under some general conditions a System (4) (resp.
5 in the discrete case) can embed Sc(fi, U)(2) (resp. Sd(fi, U) (3)) for all i ∈ N .

For example, for the problem of the lake and neighboring farms, the dy-
namics for every group member are defined from Slake in equation (1) by
fi : R2 × R R2, with:

fi((x1, x2), u) =

(
u

−bix2 + x1 + ri
xq2

m+xq2

)
(7)

where parameters m and q have consensus values among the group, whether pa-
rameters bi and ri have not. Then, by defining V = [mini∈N (bi),maxi∈N (bi)]×
[mini∈N (ri),maxi∈N (ri)] and f as:

f((x1, x2), u, v) =

(
u

v1x2 + x1 + v2
xq2

m+xq2

)
(8)

with v = (v1, v2) ∈ V , equation (6) is verified, since in this simple case we have:

∀x ∈ K,∀u ∈ U(x),∀i ∈ N , vi,u,x = (bi, ri).
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In the following, we assume that the group has defined a map f and a per-
turbation map V such that System (2) (resp. (3) in the discrete case) describes
the dynamics of A, embedding the viewpoint of all group members.

The objective of the group is then to find a consensus solution for A which
will guarantee the viability for each member with shared viable controls.

3.2 Guaranteed Viability with embedding dynamics

We recall here some definitions and properties of the mathematical theory of
viability, from [Aubin, 1991] and [Lavallée, 2020], relatively to guaranteed via-
bility.

Definition 11 A solution x(.) of system (4) (resp.5) is an evolution (t 7→ x(t))
(resp. (xk)k∈N) such that there is a control function (t 7→ u(t)) (resp. (uk)k∈N)
and a perturbation function (t 7→ v(t)) (resp. (vk)k∈N) such that system (4)
(resp.5) is verified for almost all t ≥ R+ (resp. for all k ∈ N).

Definition 12 An evolution x(.) (resp. (xk)) solution of system (4) (resp.5) is
viable in L if and only if its trajectory remains in L.

Following [Aubin, 1991], [Doyen, 2000] and [Lavallée, 2020], we recall the
property of guaranteed viability.

Definition 13 (From [Aubin, 1997]) A set L verifies the property of guaranteed
viability for Svc(f, U, V ) (4) (resp. Svd(f, U, V ) (5)) if there is a regulation map
Ũ defined on L with non empty subset of U images, i.e. ∀x ∈ L, Ũ(x) 6= ∅ and
Ũ(x) ⊂ U(x) such that for all x0 in L, all evolutions starting at x0 and governed
by Svc(f, Ũ , V ) (resp. Svd(f, Ũ , V )) are viable in L.

Definition 14 The guaranteed viability kernel associated to a set K is the
largest set in K with property of guaranteed viability (for λ-Lipschitz controls in
the continuous case - see appendix A for definition).

We note GuarSdv(f,U,V ) the guaranteed viability kernel associated to a set K for
the discrete dynamics (5). In the continuous case (4), we note itGuarλ,Scv(f,U,V ).

We have seen that the intersection of each member’s solution is not neces-
sarily a solution for all members. We are going to show that the guaranteed
viability kernel is a consensus solution (as in Definition 9).

Let Scv(f, U, V ) (resp. Sdv(f, U, V ) ) be an embedding solution for all group
members, which fulfilled conditions of Proposition 5. Let L 6= ∅ be the guar-
anteed viability kernel for system Scv(f, U, V ) with λ Lipschitz constant (resp.
Sdv(f, U, V )) associated to constraint set K. Then we have the following prop-
erty:

Theorem 1 The guaranteed viability kernel associated to K for Scv(f, U, V )
(with λ Lipschitz constant in the continuous case) (resp. Sdv(f, U, V ) in the
discrete case ) is a consensus solution to the management of A.
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The demonstration can be found in appendix A.3. We note GuarK the guar-
anteed viability kernel and Ũ the associated viable regulation map. The basic
idea is that in GuarK , from member i’s perspective, an evolution governed by
system Sc′i = Sc(fi, Ũ) (resp. Sd′i = Sd(fi, Ũ) in the discrete case) is also gov-
erned by the embedding system Scv(f, U, V ) (resp. Sdv(f, U, V )), so it remains
in GuarK , therefore GuarK is a viable set for each member i. �

Under some general conditions, the guaranteed viability kernel is a close
set (see Proposition 5 in appendix A.3). If the guaranteed viability kernel is
closed, it is possible to retrieve the value of viable controls on its boundary.
This information could be used to anticipate or to design control strategies that
keep an evolution away from the boundary.

4 Application to the problem of lake eutrophi-
cation

4.1 Lake Bourget case

We consider Lake Bourget, which is the biggest lake located entirely within
France. It is monitored by the inter-syndicate committee CISALP, which is
in charge of the design, animation and management of contractual actions for
depollution and restoration of Lake Bourget. The lake had experienced a long
eutrophication period, since in 1974, incoming amount of P in the lake was
around 300 tons per year, in 1989 the in-lake concentration was above 150
mg.m−3 ([Vinçon-Leite and Tassin, 1990]) where OECD norms assess the in-
lake concentration to a maximum of Po = 10 mg.m−3 (equivalent of 36 tons)
for the oligotrophic state (from [Vollenweider, 1982]). Similarly a threshold for
mesotrophic state Pm = 35 mg.m−3 can be defined. With concentration above
Pm the lake is supposed to be in an eutrophic state. Since the lake is monitored
and the data are available, it is possible to calibrate the equations of system 1
for lake Bourget. For Phosphorus unit in mg.m−3 states values and parameters
r and m are divided by the volume of the lake in billions of m3. The volume of
the lake is v = 3.6 109 m3 and supposed to be constant. Calibration coefficients
from [Brias et al., 2018] are given in Table 1.

Lake Bourget offers multiple services apart from being a freshwater reserve.
It is an area of major ecological interest for flora, fauna and the diversity of its
biotopes. Several areas of the lake are classified as protected area. It supports a

Table 1: Parameters of the Lake Bourget model

Parameter b r q m

Value

state unit in tons
2.2676 367.04 2.222 96.85
state unit in mg.m−3 (or µg.l−1)
2.2676 101.96 2.222 26.90
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lot of tourism and recreational activities (water-sport, fishing, beaches, marina)
and cultural activities linked in particular to historical heritage and literature.
Several other services are being considered, such as the production of hydrother-
mal energy. Although the state of the lake has considerably improved, it is still
considered as oligo-mesotrophic. Its dynamics can be unstable due to P loading
and several blooms of cyanobacteria have been observed lately.

Agriculture is now the main source of P loading since major prevention mea-
sures have been taken since 1980. In particular the effluents of water treatment
plants are no longer rejected in the lake.

The control of incoming P is considered as essential because of the potential
lagged impact of P release from sediments ([Jacquet, 2018]).

We consider a scenario where the CISALP in its mission of negotiation would
approach agricultural unions, local representatives and managers of tourism ac-
tivities, to form a committee in order to control P loading in the lake to prevent
eutrophication and its consequences. The effort on P loading we consider is
a limit on its variation as it is common in environmental actions. It can be
implemented by changes in agricultural practice and by the use of wetlands
or retention basins. Actually retention basins are being built to regulate the
incoming of polluted water.

As in Section 2, we consider that the committee members are aware of models
regarding lake Bourget (such as [Brias et al., 2018]), but they can disagree on
the value of parameters or even on the model formulation. We consider that
they can agree on a set K of desirable states and on a set of admissible control
U , or at least they can consider several scenarios for the definition of theses sets.

4.2 Scenarios and Results

We consider a scenario where members of the committee agree on the state vari-
ables and the possibility of controlling the rate of P loading (L). They consider
different parameters sets for model (1), and possibly a different formulation for
the process of recycling from sediments. Some members consider that the recy-
cling process can have more effect at low value of P total than with model (1).
A different formula for the sigmoid-like function is used in that case as shown
in Equation (9), with parameter λi controlling the shape instead of qi in model
(1). For small value of λi > 0 the recycling occurs also for low level of in-lake
P , so the lower branch of the equilibrium curve is actually higher.

S′i

{
dL
dt = u ∈ U = [umin, umax]
dP
dt = −biP (t) + L(t) + ri

P (t)

P (t)+mie(−λi(P (t)−mi))
(9)

It is possible to embed both model types by considering an additional parameter
αi ∈ [0, 1] which controls the predominance of one type over the other. The
corresponding model is represented in Equation (10).
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Bi

{
dL
dt = u ∈ U = [umin, umax]
dP
dt = −biP (t) + L(t) + (1− αi)ri P (t)qi

m
qi
i +P (t)qi

+ αiri
P (t)

P (t)+mie(−λi(P (t)−mi))

(10)
The committee members’ believes we consider are summarized in Table 2.

Regarding the definition of the constraint set, we consider that agricultural
activity leads to at least 25 tons of incoming P each year. This value is ar-
bitrary but it is lower than the mean loading between 2004 and 2016 which
was above 33 tons/year (see [Brias et al., 2018]). So we choose as lower limit
Lmin = 25/v ≈ 6.94 µg.l−1. Considering the desirable threshold for in-lake
P, we consider an optimistic scenario with the value of the mesotropic equilib-
rium as maximum, Pmax = 24.76 µg.l−1. The constraint set for this scenario
is K = {(L,P ), L ≥ Lmin, P ≤ P1} (respectively P2 for K2). As possibility
of control, we consider that the maximum rate for the reduction of incoming
P is half the maximum difference ∆ of loading between two consecutive years
between 2004 and 2016. For the increase of the loading we consider that the
maximum rate can be ∆. So the set of admissible control is U = [−∆

2 ,∆], with
∆ ≈ 3.15 µg.l−1y−1. When parameters are in a range, we consider the embed-
ding dynamics Sv as in equation 8 with the corresponding parameter as v and
V its range. For each member i it is possible to define a viability problem either
as in Section 2.3.1, when parameters have fixed values, or a guarantied viability
problem as in Section 3.2, when parameters are in a range. We note viabi the
viability kernel associated to Member i’s project (K,U) and dynamics Si (or
S′i) with fixed parameters (or Svi or S′i with parameter in a range). Figure 5
shows the viability and guarantied viability kernels computed for scenario 1 for
members 2 to 4.

Applying the method described in the previous section, we define an embed-
ding function fB for the group from model ()9) and Table 1. We then define

Parameters bi ri mi αi qi λi
b, r, m P loss max. P value model steepness steepness
in µg.l−1 rate at half type model (1) model (9)

max. rate Si S′i
Table 1

2.2676 101.96 26.90 1 2.222 -
/ Member 1
Member 2 2.2676 101.96 26.90 1 [2.2, 2.3] -
Member 3 [2.2, 2.3] 101.96 26.90 1 2.222 -
Member 4 2.2676 101.96 26.90 0 - [1/19, 1/16]

Table 2: Believes regarding the model and parameters of Lake Bourget dynam-
ics.
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the guarantied viability problem Bv (equation 13) associated to fB .

fB(x, u, v) =

(
u

−v1P + L+ r
(

(1− v2) Pv3

mv3+Pv3 + v2
P

P+me(−v4(P−m))

) )
(11)

where v1 stands for parameter bi, v2 for αi, v3 for qi and v4 for λi, with :
x = (L,P ) ∈ K
u ∈ U = [−∆

2 ,∆]
v ∈ V = [2.2, 2.3]× [0, 1]× [2.2, 2.3]× [1/19, 1/18]

(12)

(a) (a) Member 2 versus Member 1. (b) Member 3 versus Member 1.

(c) Member 4 guarantied viability ker-
nel versus Member 1.

(d) Guarantied Viability kernel
GuarfBd associated to the group
versus Member 1.

Figure 5: Guarantied viability kernel for each member and the group versus
Member 1’s viability kernel. Computation with R ([Team, 2010]) and ViabLab
([Désilles, 2020])

.
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Bv


(L,P )′(t) = fB((L,P )(t), u(t), v(t))
u(t) ∈ U
v(t) ∈ V
(L,P )(t) ∈ K

(13)

Since U and V are constant function of (L,P ), and since fB is Lipschitz, the
conditions of Proposition 5 are fulfilled. Since U is constant, it is Lipschitz
for every λ > 0, so the guarantied viability kernel Guarλ,fB (K) associated to
problem (13) is closed and has the property of guarantied viability. It is then
from Theorem 1 a consensus set of states for the four member of the committee
whose believes are summarized in Table 2. To compute an approximation of
Guarλ,fB (K), we use the ViabLab library [Désilles, 2020], developed by A.
Désilles and used in [Durand et al., 2017]. This library uses the convergence
conditions of the algorithm established by P. Saint-Pierre [Saint-Pierre, 1994].
Since the ViabLab library requires presently for the computation of guarantied
viability kernel discrete problems in time and space, we defined a discretized
version of the viability problem, with function fBd from equation (14), with a
discretization parameter τ = 0.1 for which the dynamics are stable. We also
used projection on grid method from [Lavallée, 2020] to minimize discretization
error.

fBd((L,P ), u, v) =

 L+ τu
P + τ [−v1P + L+

r
(

(1− v2) Pv3

mv3+Pv3 + v2
P

x2+me(−v4(P−m))

)]

(14)

The resulting approximation GuarfBd(K) is shown on Figure 5d. The guar-
antied viability kernel for the group is a viable set for all members, and the
viable controls on its boundary are viable controls for all members.

4.3 Discussion

Depending on the dynamics and the beliefs of the different group members, the
guarantied viability kernel computed following the approach of Section 3.1 could
be smaller than the largest viable set corresponding to the union of the parame-
ters set of each group member. For instance, with (b, r) ∈ {(2.1, 100), (2.2, 80)},
it is possible to design a viable set for these two values only, solving the problem
with the computation of integral curves as it is done in Section 2.3 for the lake
problem (see figure 4). Whereas following the method in Section 3.1, in order to
respect the conditions of VT theorems and use the viablab library it is necessary
to define a guaranty viability problem for (b, r) ∈ [2.1, 2.2]× [80, 100]. But when
the dimension of the state space is greater than 2, the first method is virtually
impossible to implement with a generic module (since a specific mathematical
study of the dynamics is necessary).

The viability algorithm is exponential with the dimension of the space in the
general case, so it can be very slow, in particular when the viability kernel is
empty or with high dimension problems. For each alternative model definition
a tyche has to be considered, which increases the dimension of V linearly with
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the number of models. The computation of GuarfBd(K) on Figure 5d takes
938.64s with a processor i7-8650U CPU @ 1.90GHz × 8 and 15.5GiB RAM,
with an accuracy of 1000 points/axis and a discretization step of 11 for control
and the model type and 5 for the three other tyches (b,q,λ). It takes 1243.86 s
for a scenario with Pmax = 15.0 µg.l−1 (all parameters being equal), and the
guarantied viability kernel is not empty. Increasing the dimension of V can
also lead to much longer computation time. For instance, it takes 7122.99 s
for the scenario with Pmax = 15.0 µg.l−1, all parameters being equal except
for m ∈ [26.0, 27.0] as additional tyche. In that case the guarantied viability
kernel is empty. This method has been used for a dimension 3 problem of
management of marine protected area [Zaleski, 2020]. With an accuracy of 100
points/axis and dimension 2 controls and tyches (with discretization step of
11), the computation time is 437.94 s. It is 3153.31 s with an accuracy of 300
points/axis and 5 steps for each tyche.

Regarding the model of Lake Bourget itself, we consider here a single con-
trol for different practices (use of wetlands, use of retention basins, differ-
ent farmer practices), and the value of its range is consistent with observa-
tions but arbitrary. The model could be improved by taking into account
more detailed mechanisms for these different types of control and their rela-
tion to soil leaching and rainfall. The lake is considered as homogeneous, which
seams a reasonable assumption regarding the water resident time of 14 years
([Brias et al., 2018]). On the other hand, since blooms of cyanobacteria are of-
ten localized, it could be useful to use spatial and weekly data to assess the size
of perturbations and take them into account to consider robustness issues as
defined in [Martin and Alvarez, 2019].

5 Conclusion

In this paper, we have presented a method for reaching a viability-based con-
sensus for the management of commons with multiple usages. We have pro-
posed a definition of the management project and stakeholder viewpoints, and
a viability-based definition for the consensus solution as a viable set for all stake-
holders with conditions on their regulation map. We have defined embedding
functions that allow to compute a guarantied viability kernel for the associated
dynamics. We have then shown that this guarantied viability kernel is a con-
sensus solution (Theorem 1). It can then be computed with algorithms used for
viability kernel approximation. We have then applied this method to a man-
agement scenario for Lake Bourget. The main interest of this method is that
stakeholders can retain their vision of the dynamics. Negotiations can focus on
the definition of desirable states and admissible actions. It also prepare the way
for an alternative to agent based modeling when dealing with stakeholders for
management of commons.
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A Properties of Viability Kernels

A.1 Properties of Multi-valued Maps

Let G be a multi-valued map from Rn to Rp. The domain of G is Dom(G) =
{x ∈ Rn, G(x) 6= ∅}. The graph of G is Graph(G) = {(x, y) ∈ Rn × Rp, y ∈
G(x)}. G has a linear growth if there is c > 0 such that for all x ∈ Dom(G),
‖G(x)‖ ≤ c(‖x‖ + 1). The system Sc(f, U) (2) is Marchaud if f is continuous,
Graph(U) is closed, f and U have linear growth and the image set {f(x, u), u ∈
U(x)} is convex for all of x ∈ Dom(U). G is Lipschitz for constant λ > 0 (or
λ-Lipschitz) if for all x1, x2 in Rn, G(x1) ⊂ G(x2) + λ‖x1 − x2‖B, where B is
the unit ball.
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A.2 Closed Viability Kernels [Aubin, 1991]

Proposition 3 Continuous case: When the system Sc(f, U) (2) is Marchaud
and K is closed, the associated viability kernel is closed. It is the largest viable
set in K.

Proposition 4 Discrete case: When system Sd(f, U) (3) is such that f is con-
tinuous, U has a linear growth, Graph(U) is closed, and when K is closed, the
associated viability kernel is closed.

A.3 Guaranteed Viability Kernels

We recall some properties of dynamical controlled tychastic systems.

Definition 15 A dynamical controlled tychastic system Scv(f, U, V ) (4) is Lip-
schitz if f is Lipschitz, and U and V are Lipschitz with compact images.

Proposition 5 From [Doyen, 2000] in the continuous case and [Lavallée, 2020]
in the discrete case. The guaranteed viability kernel associated to a set K is
closed when the dynamics verify the following conditions: In the continuous
case, when K is closed and Scv(f, U, V ) is Lipschitz ; In the discrete case, when
f and V are continuous, Graph(U) is closed and U has a linear growth (see 2.2
for the definitions).

We recall Theorem 1: The guaranteed viability kernel associated to K for
Scv(f, U, V ) (with λ Lipschitz constant in the continuous case) (resp. Sdv(f, U, V )
in the discrete case ) is a consensus solution to the management of A.

Proof of Theorem 1. Let L 6= ∅ be the guaranteed viability kernel for
system (4) with λ Lipschitz constant (resp. system (5) in the discrete case)
associated to constraint set K. Let Ũ be the guaranteed regulation map. By
definition, DomŨ = L. We now prove that the guaranteed viability kernel is a
viable set for each member i. Let i ∈ N , we consider the system Sc′i = Sc(fi, Ũ)
(resp. Sd′i = Sd(fi, Ũ) in the discrete case). Since the guaranteed viability
kernel is defined from the group project (K,U), we have L ⊂ K, and for all x ∈
L, Ũ(x) ⊂ U(x). So an evolution governed by Sc′i (resp. Sd′i) is also an evolution
governed by Sc(fi, U) (resp. Sd(fi, U)). Since system (4) (resp. system (5) )
embeds Sc(fi, Ui) (resp. Sd(fi, Ui)), it also embeds Sc′i (resp. Sd′i). Let x0 ∈ L,
and let x(.) (resp. xk) be a trajectory starting at x0 and governed by Sc′i (resp.
Sd′i). Because of the embedding there is a function v such that fi(x(t), ũ(t)) =
f(x(t), ũ(t), v(t)) (resp. fi(x

k), ũk) = f(xk, ũk, vk) in the discrete case). So x(.)
is also an evolution governed by system (4) (resp.(5)). Since L is the guaranteed
viability kernel for system (4) with λ Lipschitz constant (resp.(5)) associated
to constraint K, from Definition (13), all trajectories starting from x0 ∈ L and
governed by (4) (resp.(5)) are viable in L for control selection in Ũ . So the
trajectory of x(.) governed by Sc′i (resp. Sd′i) starting at x0 stays in L. So x(.)
is an evolution starting at x0 governed by Sci (resp. Sdi) viable in L. So L is
a viable set for member i. �
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B Embedding system

Proposition 6 If U has a linear growth and for all i ∈ N , fi has a linear
growth, then a System (4) (resp. 5) can embed Sc(fi, U)(2) (resp. Sd(fi, U)
(3)) for all i ∈ N .

Proof. We note Mx = maxi∈N ,u∈U(x)(‖f1(x, u) − fi(x, u)‖). Mx is defined
since U and all fi have a linear growth. We define f(x, u, v) = f1(x, u) + v(x)
with v(x) ∈ V (x) = B(0,Mx), where B(a, r) is the closed ball with center a and
radius r. Then for x ∈ K and u ∈ U(x) we define vi,u,x = fi(x, u) − f1(x, u).
We have ‖vi,u,x‖ ≤Mx, so vi,u,x ∈ V (x). Then ∀i ∈ N , fi(x, u) = f(x, u, vi,u,x)
and equation (6) is verified. �

Definition of f leading to smaller sets of perturbation are preferable. For
instance, it can be interesting to define f with the convex hull of the fi(x, u):
With i ∈ J = N r {1} we consider v = (vi), vi ∈ [0, 1] with

∑
i∈J vi ≤ 1, and

define f(x, u, v) = f1(x, u)(1−
∑
i∈J

vi) +
∑
i∈J

vifi(x, u).
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